데분데싸

  • 홈

MCMC 2

Chapter 1. 베이지안 추론(PyMC3)

In [1]: %config Completer.use_jedi = False 1.2 베이지안 프레임워크¶ 사후확률(posterior probability)은 곡선으로 표시되고, 불확실성은 곡선의 너비에 비례함 In [2]: %matplotlib inline from IPython.core.pylabtools import figsize import numpy as np import matplotlib.pyplot as plt import matplotlib import scipy.stats as stats matplotlib.rc('font', family='Malgun Gothic') figsize(8, 8) In [3]: dist = stats.beta n_trials = ..

기계학습/베이지안 2021.12.02

Sampling Based Inference(Forward/Rejection/Importance Sampling)

- Learn basic sampling method Understand the concep of Markov chain Monte Carlo Able to apply MCMC to the parameter inference of Bayesian networks Know the mechanism of rejection sampling Know the mechanism of importance sampling - Learn sampling based inference Understand the concept of Metropolis-Hastings algorithm Know the mechanism of Gibbs sampling Forward Sampling in GMM - Sample $z$ from ..

기계학습/인공지능및기계학습개론정리 2020.11.26
1
더보기
프로필사진

  • 분류 전체보기 (67)
    • 기계학습 (30)
      • 인공지능및기계학습개론정리 (9)
      • 밑바닥딥러닝3 오독오독 씹기 (8)
      • 베이지안 (5)
      • 수리통계학 (3)
    • 강화학습 (8)
    • 자연어, 비전 (6)
    • 교육자료 (3)
    • 논문 (1)
    • 빅데이터분석기사정리 (2)
    • 끄적끄적 (16)

최근글과 인기글

  • 최근글
  • 인기글

Tag

forward, 머신러닝, 빅데이터 분석기사, MCMC, 빅데이터, pymc3, Bayesian, Modeling, 밑바닥부터시작하는딥러닝3, 몬테카를로, 앙상블, 역전파, NLP, HMM, Monte-Carlo, 강화학습, 분석기사, reinforcement, 베이지안, 자연어,

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바